The EM algorithm is a method for finding the maximum likelihood estimate of a model in the presence of missing data. Unfortunately, EM does not produce a parameter covariance matrix for standard errors. Supplemented EM (SEM; Meng & Rubin, 1991) is one method for obtaining the parameter covariance matrix. SEM is implemented in both open-source (e.g., Chalmers, 2012; Pritikin, Hunter, & Boker, 2015) and commercial (e.g., Cai, Thissen, & du Toit, 2011) item response model estimation software. However, the original formulation of SEM did not adequately account for the limitations of IEEE 754 floating-point. Agile-SEM, a novel refinement of SEM, is proposed and compared against the original algorithm and a recent refinement (Tian, Cai, Thissen, & Xin, 2013) in a variety of item response model simulation studies. By controlling for the numerical noise intensity on a per-parameter basis, Agile-SEM demonstrated the best convergence properties, accuracy, and efficiency while, at the same time, requiring fewer tuning parameters. Complete source code is made freely available. The potential generalization of Agile-SEM to other EM application besides item response models is left as future work.
翻译:EM算法是在缺少数据的情况下寻找模型最大可能性估计的方法。 不幸的是,EM没有为标准差错生成参数共变矩阵。补充EM(SEM;Meng & Rubin,1991年)是获取参数共变矩阵的一种方法。SEM在开放源(例如Chalmers,2012年;Pritikin,Hunter, & Boker,2015年)和商用(例如Cai,Tessen, & du Toit,2011年)项目响应模型估计软件(例如Cai,Tesen, & Toit,2011年)中实施。然而,EMEM的最初设计没有充分考虑到IEEEE 754浮动点的局限性。Agile-SEM是针对最初的算法和最近的改进(Tian,Cai,Thisen, & Xin,2013年)在各种项目反应模型模拟研究中实施。Agile-SEM的原始组合,通过对数字噪音强度的控制,显示了最佳的趋同性、准确性、效率,同时要求减少AEME 浮动参数,而未来应用的完整源代码是可自由使用的。