A growing body of literature in fairness-aware ML (fairML) aspires to mitigate machine learning (ML)-related unfairness in automated decision making (ADM) by defining metrics that measure fairness of an ML model and by proposing methods that ensure that trained ML models achieve low values in those measures. However, the underlying concept of fairness, i.e., the question of what fairness is, is rarely discussed, leaving a considerable gap between centuries of philosophical discussion and recent adoption of the concept in the ML community. In this work, we try to bridge this gap by formalizing a consistent concept of fairness and by translating the philosophical considerations into a formal framework for the evaluation of ML models in ADM systems. We derive that fairness problems can already arise without the presence of protected attributes, pointing out that fairness and predictive performance are not irreconcilable counterparts, but rather that the latter is necessary to achieve the former. Moreover, we argue why and how causal considerations are necessary when assessing fairness in the presence of protected attributes. Eventually, we achieve greater linguistic clarity for the discussion of fairML by clearly assigning responsibilities to stakeholders inside and outside ML.


翻译:公平意识ML(公平ML)中越来越多的文献希望通过界定衡量多边L模式公平性的标准和提出确保经过培训的多边L模式在这些措施中达到低值的方法,减少自动决策中与机器学习有关的不公平现象;然而,很少讨论公平的基本概念,即什么公平问题,这在几个世纪哲学讨论与多边L社区最近采用这一概念之间留下了相当大的差距。在这项工作中,我们试图弥合这一差距,方法是正式确立一个一致的公平概念,并将哲学考虑转化为评价多边L模式的正式框架。我们推断,公平问题可能已经出现,没有受保护的属性,指出公平性和预测性业绩并非不可调和的对等,而是后者是实现前者所必需的。此外,我们提出,在评估受保护特性的公平性时,为什么和为什么有必要考虑因果关系。最后,我们通过向多边DMDM系统内外的利益攸关方明确分配责任,在语言上更加明确讨论公平ML。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2021年6月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
An Approach to Ensure Fairness in News Articles
Arxiv
0+阅读 · 2022年7月8日
Fairness and Bias in Robot Learning
Arxiv
0+阅读 · 2022年7月7日
Arxiv
0+阅读 · 2022年7月6日
Arxiv
22+阅读 · 2021年12月2日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关VIP内容
专知会员服务
61+阅读 · 2021年6月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员