In this study, we consider a continuous min--max optimization problem $\min_{x \in \mathbb{X} \max_{y \in \mathbb{Y}}}f(x,y)$ whose objective function is a black-box. We propose a novel approach to minimize the worst-case objective function $F(x) = \max_{y} f(x,y)$ directly using a covariance matrix adaptation evolution strategy (CMA-ES) in which the rankings of solution candidates are approximated by our proposed worst-case ranking approximation (WRA) mechanism. We develop two variants of WRA combined with CMA-ES and approximate gradient ascent as numerical solvers for the inner maximization problem. Numerical experiments show that our proposed approach outperforms several existing approaches when the objective function is a smooth strongly convex--concave function and the interaction between $x$ and $y$ is strong. We investigate the advantages of the proposed approach for problems where the objective function is not limited to smooth strongly convex--concave functions. The effectiveness of the proposed approach is demonstrated in the robust berthing control problem with uncertainty.ngly convex--concave functions. The effectiveness of the proposed approach is demonstrated in the robust berthing control problem with uncertainty.
翻译:本研究考虑一个连续的最小-最大优化问题,即 $\mathrm{min}_{x \in \mathbb{X}}\mathrm{max}_{y \in \mathbb{Y}}f(x,y)$,其中目标函数是黑箱函数。我们提出了一种新方法,直接使用协方差矩阵自适应进化策略(CMA-ES)来最小化最坏情况下的目标函数 $F(x) = \mathrm{max}_{y}f(x,y)$。我们的方法通过最坏情况排名近似机制,开发了两种变体的最坏情况情况排名近似加上CMA-ES和近似梯度上升作为内部最大化问题的数值解器。数值实验表明,当目标函数为光滑的强凸-凹函数且 $x$ 和 $y$ 之间的交互强度大时,我们提出的方法优于现有的几种方法。我们还研究了在目标函数不限于光滑强凸-凹函数的问题中,所提出方法的优势。该方法的有效性在带有不确定性的鲁棒泊车控制问题中得以证明。