Recently, Conditional Generative Adversarial Network (Conditional GAN) have shown very promising performance in several image-to-image translation applications. However, the uses of these conditional GANs are quite limited to low-resolution images, such as 256X256.The Pix2Pix-HD is a recent attempt to utilize the conditional GAN for high-resolution image synthesis. In this paper, we propose a Multi-Scale Gradient based U-Net (MSG U-Net) model for high-resolution image-to-image translation up to 2048X1024 resolution. The proposed model is trained by allowing the flow of gradients from multiple-discriminators to a single generator at multiple scales. The proposed MSG U-Net architecture leads to photo-realistic high-resolution image-to-image translation. Moreover, the proposed model is computationally efficient as com-pared to the Pix2Pix-HD with an improvement in the inference time nearly by 2.5 times. We provide the code of MSG U-Net model at https://github.com/laxmaniron/MSG-U-Net.


翻译:最近,有条件的生成反影网络(有条件的GAN)在若干图像到图像翻译应用程序中表现出非常有希望的性能,然而,这些有条件的GAN的用途相当限于低分辨率图像,如256X256.Pix2Pix-HD是最近试图利用有条件的GAN进行高分辨率图像合成的尝试。在本文件中,我们提议了一个基于多比例的U-Net(MSG U-Net)模型,用于高分辨率图像到图像翻译,直至2048X1024年分辨率。我们通过允许多分辨器的梯度向多个尺度的单一生成器流动来培训拟议的模型。拟议的MSG U-Net结构导致高分辨率图像到图像转换。此外,拟议的模型在计算上效率很高,与Pix2Pix-HD(MS U-Net)连接,在推断时间上改进了近2.5倍。我们在 https://githubub.commassionMS/G-G-Net提供MSG UNet模型的代码。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
最新《Transformers模型》教程,64页ppt
专知会员服务
311+阅读 · 2020年11月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Image Segmentation Using Deep Learning: A Survey
Arxiv
45+阅读 · 2020年1月15日
Arxiv
8+阅读 · 2018年5月1日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
311+阅读 · 2020年11月26日
Top
微信扫码咨询专知VIP会员