Exemplar-free class-incremental learning (EFCIL) aims to mitigate catastrophic forgetting in class-incremental learning (CIL) without available historical training samples as exemplars. Compared with its exemplar-based CIL counterpart that stores exemplars, EFCIL suffers more from forgetting issues. Recently, a new EFCIL branch named Analytic Continual Learning (ACL) introduces a gradient-free paradigm via Recursive Least-Square, achieving a forgetting-resistant classifier training with a frozen backbone during CIL. However, existing ACL suffers from ineffective representations and insufficient utilization of backbone knowledge. In this paper, we propose a representation-enhanced analytic learning (REAL) to address these problems. To enhance the representation, REAL constructs a dual-stream base pretraining followed by representation enhancing distillation process. The dual-stream base pretraining combines self-supervised contrastive learning for general features and supervised learning for class-specific knowledge, followed by the representation enhancing distillation to merge both streams, enhancing representations for subsequent CIL paradigm. To utilize more knowledge from the backbone, REAL presents a feature fusion buffer to multi-layer backbone features, providing informative features for the subsequent classifier training. Our method can be incorporated into existing ACL techniques and provides more competitive performance. Empirical results demonstrate that, REAL achieves state-of-the-art performance on CIFAR-100, ImageNet-100 and ImageNet-1k benchmarks, outperforming exemplar-free methods and rivaling exemplar-based approaches.


翻译:无示例类增量学习(EFCIL)旨在无需历史训练样本作为示例的情况下缓解类增量学习(CIL)中的灾难性遗忘问题。与基于示例的CIL方法相比,EFCIL因无法存储示例而更易受遗忘问题影响。近期,一种名为解析持续学习(ACL)的新EFCIL分支通过递归最小二乘法引入无梯度范式,在CIL过程中使用冻结主干网络实现抗遗忘分类器训练。然而,现有ACL方法存在表示能力不足及主干网络知识利用不充分的问题。本文提出表示增强解析学习(REAL)以解决上述问题。为增强表示能力,REAL构建了双流基础预训练与表示增强蒸馏流程:双流基础预训练结合自监督对比学习(获取通用特征)与监督学习(获取类特定知识),随后通过表示增强蒸馏融合双流特征,为后续CIL范式优化表示。为充分利用主干网络知识,REAL设计特征融合缓冲区以整合多层主干特征,为后续分类器训练提供信息丰富的特征。本方法可兼容现有ACL技术,并展现出更具竞争力的性能。实验结果表明,REAL在CIFAR-100、ImageNet-100和ImageNet-1k基准测试中达到最先进水平,其性能超越无示例方法,并与基于示例的方法相媲美。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员