The $k$-Colouring problem is to decide if the vertices of a graph can be coloured with at most $k$ colours for a fixed integer $k$ such that no two adjacent vertices are coloured alike. If each vertex u must be assigned a colour from a prescribed list $L(u) \subseteq \{1,\cdots, k\}$, then we obtain the List $k$-Colouring problem. A graph $G$ is $H$-free if $G$ does not contain $H$ as an induced subgraph. We continue an extensive study into the complexity of these two problems for $H$-free graphs. The graph $P_r+P_s$ is the disjoint union of the $r$-vertex path $P_r$ and the $s$-vertex path $P_s$. We prove that List $3$-Colouring is polynomial-time solvable for $(P_2+P_5)$-free graphs and for $(P_3+P_4)$-free graphs. Combining our results with known results yields complete complexity classifications of $3$-Colouring and List $3$-Colouring on $H$-free graphs for all graphs $H$ up to seven vertices.
翻译:$k$ 彩色问题在于决定一个图表的顶点是否可以以最多K美元彩色显示固定整数$K$的颜色,这样固定整数$的顶点就不会有两种相邻的顶点颜色。 如果每个顶点u必须从指定的列表中分配颜色 $L(u)\ subseteq $1,\\cdolts, k ⁇, 然后我们获得列表 $k$ 彩色问题 。 一个图$G$如果不是以美元为诱导子图, 则没有美元为零。 我们继续广泛研究这两个问题的复杂性, 以美元为零。 如果每个顶点 $P_r+P_s$是美元- vertex 路径 $P_ r$ 和 $s- $s- vertexpath $P_ $s。 我们证明, 列表的3$- p_ p_free $ 图表可以以美元为美元, 美元- fol- solviol- pol- pol- pol- pol- resental resmol- pol- pol- pol- pol- res res resmilling ex ex $ $)