Multifidelity approximate Bayesian computation (MF-ABC) is a likelihood-free technique for parameter inference that exploits model approximations to significantly increase the speed of ABC algorithms (Prescott and Baker, 2020). Previous work has considered MF-ABC only in the context of rejection sampling, which does not explore parameter space particularly efficiently. In this work, we integrate the multifidelity approach with the ABC sequential Monte Carlo (ABC-SMC) algorithm into a new MF-ABC-SMC algorithm. We show that the improvements generated by each of ABC-SMC and MF-ABC to the efficiency of generating Monte Carlo samples and estimates from the ABC posterior are amplified when the two techniques are used together.
翻译:Bayesian 计算(MF-ABC)是一种无概率的参数推导技术,利用模型近似值大幅提高ABC算法的速度(Prescott和Baker,2020年)。以前的工作只是在拒绝抽样的情况下才考虑MF-ABC,这并没有特别有效地探索参数空间。在这项工作中,我们把多异性法与ABC 连续的蒙特卡洛(ABC-SMC)算法结合到一个新的MF-ABC-SMC算法中。我们表明,ABC-SMC和MF-ABC的每个模型近似值都提高了生成Monte Carlo样本的效率,并且在同时使用这两种技术时,ABC 远地点的测算法得到了扩大。