In this paper we present our preliminary work on model-based behavioral analysis of horse motion. Our approach is based on the SMAL model, a 3D articulated statistical model of animal shape. We define a novel SMAL model for horses based on a new template, skeleton and shape space learned from $37$ horse toys. We test the accuracy of our hSMAL model in reconstructing a horse from 3D mocap data and images. We apply the hSMAL model to the problem of lameness detection from video, where we fit the model to images to recover 3D pose and train an ST-GCN network on pose data. A comparison with the same network trained on mocap points illustrates the benefit of our approach.
翻译:在本文中,我们介绍我们对马运动基于模型的行为分析的初步工作。我们的方法基于SMAL模型,即3D分解的动物形状统计模型。我们根据从37美元的马玩具中学习的新模板、骨架和形状空间,为马匹定义了一个新的SMAL模型。我们用3D 摩盖数据和图像来测试我们的HSMAL模型在重建马匹时的准确性。我们用HSMAL模型从视频中检测跛脚的问题,我们把模型用于图像,以恢复3D 姿势,并培训ST-GCN 造型数据网络。与在摩盖点上受过训练的同一网络的比较显示了我们方法的好处。