Several problems in neuroimaging and beyond require inference on the parameters of multi-task sparse hierarchical regression models. Examples include M/EEG inverse problems, neural encoding models for task-based fMRI analyses, and climate science. In these domains, both the model parameters to be inferred and the measurement noise may exhibit a complex spatio-temporal structure. Existing work either neglects the temporal structure or leads to computationally demanding inference schemes. Overcoming these limitations, we devise a novel flexible hierarchical Bayesian framework within which the spatio-temporal dynamics of model parameters and noise are modeled to have Kronecker product covariance structure. Inference in our framework is based on majorization-minimization optimization and has guaranteed convergence properties. Our highly efficient algorithms exploit the intrinsic Riemannian geometry of temporal autocovariance matrices. For stationary dynamics described by Toeplitz matrices, the theory of circulant embeddings is employed. We prove convex bounding properties and derive update rules of the resulting algorithms. On both synthetic and real neural data from M/EEG, we demonstrate that our methods lead to improved performance.
翻译:神经成形和神经外的一些问题要求就多任务分散的等级回归模型参数进行推论,例如M/EEG反问题、基于任务FMRI分析的神经编码模型和气候科学。在这些领域,要推断的模型参数和测量噪音可能呈现复杂的时空结构。现有的工作要么忽视时间结构,要么导致计算要求推论计划。克服这些限制,我们设计了一个新的灵活的Bayesian等级框架,模型参数和噪音的时空动态模型在其中建模,以建立Kronecker产品共变结构。我们框架中的推论以主要化-最小化优化为基础,保证了趋同特性。我们高效的算法利用了时间自动变异矩阵的内在里曼性几何测量法。对于Toeplitz矩阵描述的固定动态,采用了循环嵌入理论。我们证明,对模型参数和噪音的时空动态进行了交织,并得出由此产生的算法规则的更新。在M/EEG的合成和真实神经元数据上,我们展示了我们改进了使用的方法。