Gaussian stochastic process (GaSP) has been widely used as a prior over functions due to its flexibility and tractability in modeling. However, the computational cost in evaluating the likelihood is $O(n^3)$, where $n$ is the number of observed points in the process, as it requires to invert the covariance matrix. This bottleneck prevents GaSP being widely used in large-scale data. We propose a general class of nonseparable GaSP models for multiple functional observations with a fast and exact algorithm, in which the computation is linear ($O(n)$) and exact, requiring no approximation to compute the likelihood. We show that the commonly used linear regression and separable models are special cases of the proposed nonseparable GaSP model. Through the study of an epigenetic application, the proposed nonseparable GaSP model can accurately predict the genome-wide DNA methylation levels and compares favorably to alternative methods, such as linear regression, random forest and localized Kriging method. The algorithm for fast computation is implemented in the ${\tt FastGaSP}$ R package on CRAN.


翻译:Gausian Stochasteric 进程(Gausian Stochasteric process (GaSP) 由于其在建模方面的灵活性和可移动性,已被广泛用作先前的一项功能。然而,评估可能性的计算成本是 $O (n)3, 美元, 美元是该过程中观测到的点数, 因为它需要倒转共差矩阵。 这个瓶颈防止在大型数据中广泛使用 Gausian 的 Gauscast 进程( GaSP 进程) 。 我们提议了一个非可分离的 GaSP 模型的一般类别, 使用快速精确的算法进行多重功能观测, 其计算是线性( O(n) $) 和准确的, 不需要近似值来计算可能性。 我们显示, 常用的线性回归和可分离模型是拟议不可分离的 GaSP 模型的特殊案例。 通过对异基因应用的研究, 拟议的不可分离的 GaSP 模型可以准确预测整个基因组的DNA甲基化水平, 和比较优于替代方法, 如线性回归、 随机森林和局部克里金化方法。 。 快速计算的算法是在 CRAAN 的 的 的 的 $_ trast GSP 。

0
下载
关闭预览

相关内容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存储技术会议。 Publisher:USENIX。 SIT:http://dblp.uni-trier.de/db/conf/fast/
【AAAI2021】 层次图胶囊网络
专知会员服务
82+阅读 · 2020年12月18日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
【AAAI2021】 层次图胶囊网络
专知会员服务
82+阅读 · 2020年12月18日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员