In this paper, we consider how to partition the parity-check matrices (PCMs) to reduce the hardware complexity and computation delay for the row layered decoding of quasi-cyclic low-density parity-check (QC-LDPC) codes. First, we formulate the PCM partitioning as an optimization problem, which targets to minimize the maximum column weight of each layer while maintaining a block cyclic shift property among different layers. As a result, we derive all the feasible solutions for the problem and propose a tight lower bound $\omega_{LB}$ on the minimum possible maximum column weight to evaluate a solution. Second, we define a metric called layer distance to measure the data dependency between consecutive layers and further illustrate how to identify the solutions with desired layer distance from those achieving the minimum value of $\omega_{LB}=1$, which is preferred to reduce computation delay. Next, we demonstrate that up-to-now, finding an optimal solution for the optimization problem with polynomial time complexity is unachievable. Therefore, both enumerative and greedy partition algorithms are proposed instead. After that, we modify the quasi-cyclic progressive edge-growth (QC-PEG) algorithm to directly construct PCMs that have a straightforward partition scheme to achieve $\omega_{LB} $ or the desired layer distance. Simulation results showed that the constructed codes have better error correction performance and smaller average number of iterations than the underlying 5G LDPC code.
翻译:在本文中,我们考虑如何分割对等检查矩阵(PCM),以减少半周期低密度对等检查(QC-LDPC)的分解分解码(QC-LDPC)的硬件复杂性和计算延迟。首先,我们将PCM分区设计成一个优化问题,目标是最大限度地减少每个层的最大列重量,同时在不同层次之间保持一个区块周期性转移属性。结果,我们为问题找到所有可行的解决办法,并提议在尽可能低的最大列重量方面,为评估一个解决方案,在最起码可能达到的最大列重量的美元上下限 $gomega ⁇ LB}上下限。因此,我们为测量连续层之间数据依赖度(QC)的分层距离,进一步说明如何找到与达到最小值$gomegaLB$1$的分解码所期望的解决方案。接下来,我们证明,从现在到现在,找到最优于多时间复杂性最优化的优化问题的最佳解决方案。因此,提出了更小的计算和贪婪的分区算算算算法,而代为更小的。之后,我们直接修正了精准的里程-C级的里程规则,我们展示了精度-级的里程里程里程规则,从而展示了Q-利基-级的里程-级的里程-级的里程-级的里程-底底部-底部-级规则。