With the increasing complexity of the traffic environment, the importance of safety perception in intelligent driving is growing. Conventional methods in the robust perception of intelligent driving focus on training models with anomalous data, letting the deep neural network decide how to tackle anomalies. However, these models cannot adapt smoothly to the diverse and complex real-world environment. This paper proposes a new type of metric known as Eloss and offers a novel training strategy to empower perception models from the aspect of anomaly detection. Eloss is designed based on an explanation of the perception model's information compression layers. Specifically, taking inspiration from the design of a communication system, the information transmission process of an information compression network has two expectations: the amount of information changes steadily, and the information entropy continues to decrease. Then Eloss can be obtained according to the above expectations, guiding the update of related network parameters and producing a sensitive metric to identify anomalies while maintaining the model performance. Our experiments demonstrate that Eloss can deviate from the standard value by a factor over 100 with anomalous data and produce distinctive values for similar but different types of anomalies, showing the effectiveness of the proposed method. Our code is available at: (code available after paper accepted).
翻译:随着交通环境的日益复杂,智能驾驶安全观念的重要性正在日益增强。 智能驾驶安全观念的重要性正在日益增长。 智能驾驶高度认知的常规方法对智能驾驶模式有很强的认识,注重使用异常数据的培训模式,让深神经网络决定如何应对异常现象。 然而,这些模型无法顺利适应多样化和复杂的现实世界环境。 本文提出一种新的计量方法,称为“Eloss”,并提供一种新的培训战略,从异常检测方面增强认知模型的能力。 损失是根据对感知模型信息压缩层的解释设计的。 具体地说,从通信系统的设计的灵感出发,信息压缩网络的信息传输过程有两种期望:信息变化的数量稳定,信息发源器继续下降。 然后,根据上述预期,可以获取Eloss,指导相关网络参数的更新,并制作敏感度度,以识别异常现象,同时保持模型性能。 我们的实验表明,Eloss可能偏离标准值,以100多个因素为异常数据,产生类似但不同的异常类型的独特值,显示拟议方法的有效性。