With the increasing complexity of the traffic environment, the importance of safety perception in intelligent driving is growing. Conventional methods in the robust perception of intelligent driving focus on training models with anomalous data, letting the deep neural network decide how to tackle anomalies. However, these models cannot adapt smoothly to the diverse and complex real-world environment. This paper proposes a new type of metric known as Eloss and offers a novel training strategy to empower perception models from the aspect of anomaly detection. Eloss is designed based on an explanation of the perception model's information compression layers. Specifically, taking inspiration from the design of a communication system, the information transmission process of an information compression network has two expectations: the amount of information changes steadily, and the information entropy continues to decrease. Then Eloss can be obtained according to the above expectations, guiding the update of related network parameters and producing a sensitive metric to identify anomalies while maintaining the model performance. Our experiments demonstrate that Eloss can deviate from the standard value by a factor over 100 with anomalous data and produce distinctive values for similar but different types of anomalies, showing the effectiveness of the proposed method. Our code is available at: (code available after paper accepted).


翻译:随着交通环境的日益复杂,智能驾驶安全观念的重要性正在日益增强。 智能驾驶安全观念的重要性正在日益增长。 智能驾驶高度认知的常规方法对智能驾驶模式有很强的认识,注重使用异常数据的培训模式,让深神经网络决定如何应对异常现象。 然而,这些模型无法顺利适应多样化和复杂的现实世界环境。 本文提出一种新的计量方法,称为“Eloss”,并提供一种新的培训战略,从异常检测方面增强认知模型的能力。 损失是根据对感知模型信息压缩层的解释设计的。 具体地说,从通信系统的设计的灵感出发,信息压缩网络的信息传输过程有两种期望:信息变化的数量稳定,信息发源器继续下降。 然后,根据上述预期,可以获取Eloss,指导相关网络参数的更新,并制作敏感度度,以识别异常现象,同时保持模型性能。 我们的实验表明,Eloss可能偏离标准值,以100多个因素为异常数据,产生类似但不同的异常类型的独特值,显示拟议方法的有效性。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年3月24日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员