In active learning, new labels are commonly acquired in batches. However, common acquisition functions are only meant for one-sample acquisition rounds at a time, and when their scores are used naively for batch acquisition, they result in batches lacking diversity, which deteriorates performance. On the other hand, state-of-the-art batch acquisition functions are costly to compute. In this paper, we present a novel class of stochastic acquisition functions that extend one-sample acquisition functions to the batch setting by observing how one-sample acquisition scores change as additional samples are acquired and modelling this difference for additional batch samples. We simply acquire new samples by sampling from the pool set using a Gibbs distribution based on the acquisition scores. Our acquisition functions are both vastly cheaper to compute and out-perform other batch acquisition functions.


翻译:在积极学习中,通常会分批获得新的标签,但是,共同的购置功能只用于一次一模版的购置回合,当分数被天真地用于批量采购时,它们会导致批量缺乏多样性,致使性能恶化。另一方面,最先进的批量获取功能计算成本很高。在本文中,我们提出了一个新型的随机获取功能类别,将一模版的购置功能扩大到批量设置,通过观察如何随着额外样品的获取而改变一模版的购置分数,并用这种差异作为其他批量样本的模型。我们只是利用基于购置分数的Gibbs分配方法从集合中抽样采集新的样本。我们的购置功能对于计算并超越其他批量获取功能来说成本非常低。

0
下载
关闭预览

相关内容

【经典书】C语言傻瓜式入门(第二版),411页pdf
专知会员服务
51+阅读 · 2020年8月16日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
浅谈主动学习(Active Learning)
凡人机器学习
31+阅读 · 2020年6月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
小样本学习(Few-shot Learning)综述
黑龙江大学自然语言处理实验室
28+阅读 · 2019年4月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
论文 | 中文词向量论文综述(二)
黑龙江大学自然语言处理实验室
3+阅读 · 2018年8月22日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
Arxiv
5+阅读 · 2017年12月14日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
浅谈主动学习(Active Learning)
凡人机器学习
31+阅读 · 2020年6月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
小样本学习(Few-shot Learning)综述
黑龙江大学自然语言处理实验室
28+阅读 · 2019年4月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
论文 | 中文词向量论文综述(二)
黑龙江大学自然语言处理实验室
3+阅读 · 2018年8月22日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员