The location, timing, and abundance of gene expression (both mRNA and proteins) within a tissue define the molecular mechanisms of cell functions. Recent technology breakthroughs in spatial molecular profiling, including imaging-based technologies and sequencing-based technologies, have enabled the comprehensive molecular characterization of single cells while preserving their spatial and morphological contexts. This new bioinformatics scenario calls for effective and robust computational methods to identify genes with spatial patterns. We represent a novel Bayesian hierarchical model to analyze spatial transcriptomics data, with several unique characteristics. It models the zero-inflated and over-dispersed counts by deploying a zero-inflated negative binomial model that greatly increases model stability and robustness. Besides, the Bayesian inference framework allows us to borrow strength in parameter estimation in a de novo fashion. As a result, the proposed model shows competitive performances in accuracy and robustness over existing methods in both simulation studies and two real data applications. The related R/C++ source code is available at https://github.com/Minzhe/BOOST-GP.
翻译:组织内基因表达形式(包括MRNA和蛋白质)的位置、时机和丰度(包括MRNA和蛋白质)在组织内的位置、时机和丰度决定了细胞功能的分子机制。最新的空间分子特征分析技术突破,包括基于成像的技术和基于测序的技术,使得单细胞在保持其空间和形态环境的同时能够全面进行分子定性。这种新的生物信息假设需要有效和有力的计算方法来识别具有空间模式的基因。我们代表着一种新型的贝叶西亚等级模型来分析空间转录组数据,具有若干独特的特点。它通过部署零膨胀和过度分散的负双感模型模型来模拟零膨胀和超分散的计数。此外,巴伊斯推断框架允许我们在参数估计中以新的方式借用强度。因此,拟议的模型在模拟研究和两个真实数据应用中都显示了准确和稳健的竞争性表现。相关的R/C++源代码可在https://github.com/MINZEST-GP上查阅。