Soils have been heralded as a hidden resource that can be leveraged to mitigate and address some of the major global environmental challenges. Specifically, the organic carbon stored in soils, called Soil Organic Carbon (SOC), can, through proper soil management, help offset fuel emissions, increase food productivity, and improve water quality. As collecting data on SOC is costly and time consuming, not much data on SOC is available, although understanding the spatial variability in SOC is of fundamental importance for effective soil management. In this manuscript, we propose a modeling framework that can be used to gain a better understanding of the dependence structure of a spatial process by identifying regions within a spatial domain where the process displays the same spatial correlation range. To achieve this goal, we propose a generalization of the Multi-Resolution Approximation (M-RA) modeling framework of Katzfuss (2017) originally introduced as a strategy to reduce the computational burden encountered when analyzing massive spatial datasets. To allow for the possibility that the correlation of a spatial process might be characterized by a different range in different subregions of a spatial domain, we provide the M-RA basis functions weights with a two-component mixture prior with one of the mixture components a shrinking prior. We call our approach the mixture M-RA. Application of the mixture M-RA model to both stationary and non-stationary data shows that the mixture M-RA model can handle both types of data, can correctly establish the type of spatial dependence structure in the data (e.g. stationary vs not), and can identify regions of local stationarity.
翻译:土壤被视为一种隐藏的资源,可以用来减轻和应对一些重大的全球环境挑战。具体地说,土壤中储存的有机碳,称为土壤有机碳(SOC),可以通过适当的土壤管理,帮助抵消燃料排放,提高粮食生产率和改善水质。由于收集SOC数据成本高,耗时甚多,因此没有多少关于SOC的数据,尽管了解SOC的空间变异性对于有效的土壤管理具有根本重要性。在本稿中,我们提出一个建模框架,以便更好地了解空间过程的依附性结构,通过确定一个空间域内的区域,该过程显示同样的空间相关范围。为实现这一目标,我们建议对多分辨率吸附框架(M-RA)进行概括化,这最初作为减少在分析大规模空间数据集时遇到的计算负担的战略(2017年),虽然理解SOC的空间变异性对空间进程的空间过程是十分重要的。为了能够将空间过程的关联性描述在不同空间域次区域的不同范围,我们提供了M-RA基础函数权重,为了实现这一目标,我们提供了多种分辨率的M-RA混合物的混合结构,而之前的混合物的混合物的混合物的混合物流流数据类型都显示。