We propose a systematic method for learning stable and physically interpretable dynamical models using sampled trajectory data from physical processes based on a generalized Onsager principle. The learned dynamics are autonomous ordinary differential equations parameterized by neural networks that retain clear physical structure information, such as free energy, diffusion, conservative motion and external forces. For high dimensional problems with a low dimensional slow manifold, an autoencoder with metric preserving regularization is introduced to find the low dimensional generalized coordinates on which we learn the generalized Onsager dynamics. Our method exhibits clear advantages over existing methods on benchmark problems for learning ordinary differential equations. We further apply this method to study Rayleigh-Benard convection and learn Lorenz-like low dimensional autonomous reduced order models that capture both qualitative and quantitative properties of the underlying dynamics. This forms a general approach to building reduced order models for forced dissipative systems.
翻译:我们提出一个系统的方法,利用基于普遍Onsager原则的物理过程的抽样轨迹数据,学习稳定和物理可解释的动态模型。所学的动态是自主的普通差异方程式,由保留清晰物理结构信息的神经网络进行参数化,这些神经网络保留清晰的物理结构信息,如自由能源、扩散、保守运动和外部力量。对于低维慢速多元体的高维问题,我们引入一个带有公制保护的自动编码器,以找到我们学习通用Onsager动态的低维度通用坐标。我们的方法在学习普通差异方程式的基准问题的现有方法上有着明显的优势。我们进一步运用这一方法来研究Rayleg-Benard对等和学习类似Lorenz的低维自主减序模型,以捕捉基本动态的定性和定量特性。这构成了为强制分解系统构建减序模型的一般方法。