The noisy intermediate-scale quantum (NISQ) devices enable the implementation of the variational quantum circuit (VQC) for quantum neural networks (QNN). Although the VQC-based QNN has succeeded in many machine learning tasks, the representation and generalization powers of VQC still require further investigation, particularly when the dimensionality of classical inputs is concerned. In this work, we first put forth an end-to-end quantum neural network, TTN-VQC, which consists of a quantum tensor network based on a tensor-train network (TTN) for dimensionality reduction and a VQC for functional regression. Then, we aim at the error performance analysis for the TTN-VQC in terms of representation and generalization powers. We also characterize the optimization properties of TTN-VQC by leveraging the Polyak-Lojasiewicz (PL) condition. Moreover, we conduct the experiments of functional regression on a handwritten digit classification dataset to justify our theoretical analysis.
翻译:噪声中间量子(NISQ)装置使量子神经网络的量子量子电路(VQC)得以实施。虽然基于VQC的QNN成功地完成了许多机器学习任务,但VQC的代表性和一般化能力仍然需要进一步调查,特别是在涉及古典投入的维度时。在这项工作中,我们首先提出了一个端到端量子神经网络(TTN-VQC),它包括一个量子拉子网络,其基础是用于减少维度的多压电网络(TTN)和功能回归的VQC。然后,我们的目标是对TN-VQC的代表性和一般化能力进行错误性能分析。我们还利用Polyak-Lojasiewicz(PL)条件来描述TTN-VQC的优化性能。此外,我们还在手写数字分类数据集上进行了功能回归试验,以证明我们理论分析的正确性能。