Slimmable neural networks provide a flexible trade-off front between prediction error and computational requirement (such as the number of floating-point operations or FLOPs) with the same storage requirement as a single model. They are useful for reducing maintenance overhead for deploying models to devices with different memory constraints and are useful for optimizing the efficiency of a system with many CNNs. However, existing slimmable network approaches either do not optimize layer-wise widths or optimize the shared-weights and layer-wise widths independently, thereby leaving significant room for improvement by joint width and weight optimization. In this work, we propose a general framework to enable joint optimization for both width configurations and weights of slimmable networks. Our framework subsumes conventional and NAS-based slimmable methods as special cases and provides flexibility to improve over existing methods. From a practical standpoint, we propose Joslim, an algorithm that jointly optimizes both the widths and weights for slimmable nets, which outperforms existing methods for optimizing slimmable networks across various networks, datasets, and objectives. Quantitatively, improvements up to 1.7% and 8% in top-1 accuracy on the ImageNet dataset can be attained for MobileNetV2 considering FLOPs and memory footprint, respectively. Our results highlight the potential of optimizing the channel counts for different layers jointly with the weights for slimmable networks. Code available at https://github.com/cmu-enyac/Joslim.


翻译:智能神经网络为预测错误和计算要求(如浮点操作的数量或FLOPs的数量)提供一个灵活的权衡前端,其存储要求与单一模型相同。它们有助于减少将模型部署到记忆限制不同的装置的维护间接费用,有助于优化使用许多CNN的系统效率。然而,现有的微薄网络方法不是优化层宽度,就是独立优化共享重量和层宽度,从而留下大量空间,通过联合宽度和重量优化来改进。在这项工作中,我们提议了一个总框架,以便能够对较薄网络的宽度配置和重量进行联合优化。我们的框架子集成和基于NAS的可粘度方法,作为特殊案例,并为改进现有方法的效率提供了灵活性。从实际角度看,我们提议了约瑟林,这一算法可以共同优化较薄网的宽度和重量,从而超越了现有各种网络、数据集和目标的精度。从1.7%到1.7%和8-Net的重量,在最高图像系统中,可以分别改进我们最高级的移动轨道/L的图像记录。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
深度学习模型剪枝:Slimmable Networks三部曲
极市平台
3+阅读 · 2020年2月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Slimmable Generative Adversarial Networks
Arxiv
3+阅读 · 2020年12月10日
Arxiv
8+阅读 · 2020年10月9日
Arxiv
3+阅读 · 2017年10月1日
Arxiv
5+阅读 · 2017年9月8日
VIP会员
相关资讯
深度学习模型剪枝:Slimmable Networks三部曲
极市平台
3+阅读 · 2020年2月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员