Participants in political discourse employ rhetorical strategies -- such as hedging, attributions, or denials -- to display varying degrees of belief commitments to claims proposed by themselves or others. Traditionally, political scientists have studied these epistemic phenomena through labor-intensive manual content analysis. We propose to help automate such work through epistemic stance prediction, drawn from research in computational semantics, to distinguish at the clausal level what is asserted, denied, or only ambivalently suggested by the author or other mentioned entities (belief holders). We first develop a simple RoBERTa-based model for multi-source stance predictions that outperforms more complex state-of-the-art modeling. Then we demonstrate its novel application to political science by conducting a large-scale analysis of the Mass Market Manifestos corpus of U.S. political opinion books, where we characterize trends in cited belief holders -- respected allies and opposed bogeymen -- across U.S. political ideologies.
翻译:政治话语的参与者采用辞令策略 -- -- 如套期保值、归属或否认 -- -- 来展示对由自己或其他人提出的主张的不同程度的信仰承诺。传统上,政治科学家通过劳动密集型人工内容分析研究了这些传记现象。我们提议通过从计算语义研究中得出的缩略语姿态预测来帮助这种工作自动化,以区分作者或其他所述实体(信仰持有者)所主张的、否认的,或只是含糊建议的内容。我们首先开发了一个基于罗贝塔的多来源立场预测的简单模型,该模型将超越更为复杂的艺术型态模型。然后我们通过对美国政治观点书籍《大众市场宣言》进行大规模分析,展示其对政治科学的新应用,我们在其中描述所有被引用的信仰持有者 -- -- 受尊重的盟友和反对的野兽人 -- -- 在整个美国政治意识形态中描述的信仰持有者趋势。