The main drawback for the application of the conforming Argyris FEM is the labourious implementation on the one hand and the low convergence rates on the other. If no appropriate adaptive meshes are utilised, only the convergence rate caused by corner singularities [Blum and Rannacher, 1980], far below the approximation order for smooth functions, can be achieved. The fine approximation with the Argyris FEM produces high-dimensional linear systems and for a long time an optimal preconditioned scheme was not available for unstructured grids. This paper presents numerical benchmarks to confirm that the adaptive multilevel solver for the hierarchical Argyris FEM from [Carstensen and Hu, 2021] is in fact highly efficient and of linear time complexity. Moreover, the very first display of optimal convergence rates in practically relevant benchmarks with corner singularities and general boundary conditions leads to the rehabilitation of the Argyris finite element from the computational perspective.
翻译:应用符合Argyris FEM的主要缺点是,一方面执行困难,另一方面趋同率低。如果不使用适当的适应性模贝,只能达到远低于光滑功能近似顺序的角奇数[Blum和Rannacher,1980年]造成的趋同率。与Argyris FEM的细微接近产生了高维线性系统,长期以来,没有为无结构的电网提供最佳的前提条件。本文提出了数字基准,以证实[Carstensen和Hu,20211年]的Argyris FEM等级的适应性多层次求解器事实上效率很高,具有线性时间复杂性。此外,首次显示与角异数和一般边界条件相关的实际基准的最佳趋同率,从计算角度可以恢复Argyris的限定要素。