We propose Active Surrogate Estimators (ASEs), a new method for label-efficient model evaluation. Evaluating model performance is a challenging and important problem when labels are expensive. ASEs address this active testing problem using a surrogate-based estimation approach that interpolates the errors of points with unknown labels, rather than forming a Monte Carlo estimator. ASEs actively learn the underlying surrogate, and we propose a novel acquisition strategy, XWED, that tailors this learning to the final estimation task. We find that ASEs offer greater label-efficiency than the current state-of-the-art when applied to challenging model evaluation problems for deep neural networks.
翻译:我们建议使用主动代用模拟器(ASSE),这是一种新的标签高效模型评估方法。在标签昂贵的情况下,评估模型性能是一个具有挑战性和重要的问题。ASSE使用一种代用估算法来解决这一积极的测试问题,这种代用估算法将点误差与未知标签进行内插,而不是形成蒙特卡洛测算器。ASSE积极学习了潜在的代用模型,我们提出了一种新的购置战略,即XWED,将这种学习与最终估算任务相匹配。我们发现,在应用AESE来应对深神经网络的模型评估问题时,其标签效率比目前的最新水平要高。