Optical neural networks (ONNs) have demonstrated record-breaking potential in high-performance neuromorphic computing due to their ultra-high execution speed and low energy consumption. However, current learning protocols fail to provide scalable and efficient solutions to photonic circuit optimization in practical applications. In this work, we propose a novel on-chip learning framework to release the full potential of ONNs for power-efficient in situ training. Instead of deploying implementation-costly back-propagation, we directly optimize the device configurations with computation budgets and power constraints. We are the first to model the ONN on-chip learning as a resource-constrained stochastic noisy zeroth-order optimization problem, and propose a novel mixed-training strategy with two-level sparsity and power-aware dynamic pruning to offer a scalable on-chip training solution in practical ONN deployment. Compared with previous methods, we are the first to optimize over 2,500 optical components on chip. We can achieve much better optimization stability, 3.7x-7.6x higher efficiency, and save >90% power under practical device variations and thermal crosstalk.


翻译:光学神经网络(ONNs)由于超高执行速度和低能消耗,在高性能神经形态计算中表现出破纪录的潜力。然而,目前的学习协议未能为实际应用中的光电路优化提供可扩展的高效解决方案。在这项工作中,我们提议了一个新型的芯片学习框架,以释放ONNs在现场高能效培训方面的全部潜力。我们不采用成本成本成本的反向调整,而是用计算预算和电力限制来直接优化设备配置。我们是第一个将ONN在芯片上学习作为受资源限制的受资源限制的随机扰动零序优化问题的模型,并提出一个新的混合培训战略,配有两级的宽度和能能能动性动态调整,以便在实际部署ONN时提供可扩展的芯片培训解决方案。与以前的方法相比,我们是第一个在芯片上优化超过2 500个光学组件的方法。我们可以实现更好的优化稳定性,3.7x-7.6x更高的效率,并在实际设备变化和热交叉跟踪下节省超过90%的功率。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
已删除
将门创投
4+阅读 · 2019年5月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Arxiv
0+阅读 · 2021年4月16日
Arxiv
38+阅读 · 2020年12月2日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年5月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
相关论文
Arxiv
0+阅读 · 2021年4月16日
Arxiv
38+阅读 · 2020年12月2日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Top
微信扫码咨询专知VIP会员