This paper presents Domain-Specific Sub-network (DoSS). It uses a set of masks obtained through pruning to define a sub-network for each domain and finetunes the sub-network parameters on domain data. This performs very closely and drastically reduces the number of parameters compared to finetuning the whole network on each domain. Also a method to make masks unique per domain is proposed and shown to greatly improve the generalization to unseen domains. In our experiments on German to English machine translation the proposed method outperforms the strong baseline of continue training on multi-domain (medical, tech and religion) data by 1.47 BLEU points. Also continue training DoSS on new domain (legal) outperforms the multi-domain (medical, tech, religion, legal) baseline by 1.52 BLEU points.
翻译:本文展示了域特定子网络(DoSS) 。 它使用一套通过编程获得的面罩来定义每个域的子网络, 并微调域数据上的子网络参数 。 这非常密切地减少了参数数量, 与每个域上整个网络的微调相比, 大幅降低了参数数量 。 也提出了一种使面罩在每个域上独具特色的方法, 并显示它大大改进了对看不见域的概括化。 在我们关于德语到英语机的实验中, 拟议的方法比1.47 BLEU点的多域( 医疗、技术、 技术和 宗教) 数据继续培训的坚实基线要强。 另外, 还在新域( 法律) 培训DOS 将多域( 医疗、技术、 宗教、 法律) 基线比1.52 BLEU 点的多域( ) 基线化为1.52 。