Corrective Shared Autonomy is a method where human corrections are layered on top of an otherwise autonomous robot behavior. Specifically, a Corrective Shared Autonomy system leverages an external controller to allow corrections across a range of task variables (e.g., spinning speed of a tool, applied force, path) to address the specific needs of a task. However, this inherent flexibility makes the choice of what corrections to allow at any given instant difficult to determine. This choice of corrections includes determining appropriate robot state variables, scaling for these variables, and a way to allow a user to specify the corrections in an intuitive manner. This paper enables efficient Corrective Shared Autonomy by providing an automated solution based on Learning from Demonstration to both extract the nominal behavior and address these core problems. Our evaluation shows that this solution enables users to successfully complete a surface cleaning task, identifies different strategies users employed in applying corrections, and points to future improvements for our solution.
翻译:共享自我调节是一种方法, 人类的校正在非自主机器人行为之上被分层。 具体地说, 一种校正共享自控系统利用外部控制器对一系列任务变量( 例如工具的旋转速度、 应用力、 路径) 进行校正, 以满足任务的具体需求。 然而, 这种内在的灵活性使得在任何特定时刻都很难确定校正的选项。 这种校正选择包括确定适当的机器人状态变量, 按比例调整这些变量, 以及允许用户以直观方式指定校正的方法。 本文提供了基于演示学习的自动解决方案, 以提取名义行为并解决这些核心问题。 我们的评估显示, 这种解决方案使用户能够成功完成表面清理任务, 确定应用校正的不同战略用户, 并指明未来如何改进我们的解决方案 。