As a popular representation of 3D data, point cloud may contain noise and need to be filtered before use. Existing point cloud filtering methods either cannot preserve sharp features or result in uneven point distribution in the filtered output. To address this problem, this paper introduces a point cloud filtering method that considers both point distribution and feature preservation during filtering. The key idea is to incorporate a repulsion term with a data term in energy minimization. The repulsion term is responsible for the point distribution, while the data term is to approximate the noisy surfaces while preserving the geometric features. This method is capable of handling models with fine-scale features and sharp features. Extensive experiments show that our method yields better results with a more uniform point distribution ($5.8\times10^{-5}$ Chamfer Distance on average) in seconds.
翻译:作为3D数据的流行表示,点云可能含有噪音,在使用前需要过滤。现有的点云过滤方法既不能保持锐利特征,也不能导致过滤输出中的点分布不均。为了解决这个问题,本文件引入了一种点云过滤方法,既考虑点分布,又考虑过滤过程中的特征保存。关键的想法是将一个反射术语与数据术语一起纳入能量最小化中。反射术语负责点分布,而数据术语则是在保存几何特征的同时接近噪音表面。这种方法能够处理具有精细尺寸特征和突出特征的模型。广泛的实验表明,我们的方法在秒内以更统一的点分布(平均为5.8小时=10美元=5美元)产生更好的效果。