We address the facility location problems on dynamic flow path networks. A dynamic flow path network consists of an undirected path with positive edge lengths, positive edge capacities, and positive vertex weights. A path can be considered as a road, an edge length as the distance along the road and a vertex weight as the number of people at the site. An edge capacity limits the number of people that can enter the edge per unit time. In the dynamic flow network, given particular points on edges or vertices, called sinks, all the people evacuate from the vertices to the sinks as quickly as possible. The problem is to find the location of sinks on a dynamic flow path network in such a way that the aggregate evacuation time (i.e., the sum of evacuation times for all the people) to sinks is minimized. We consider two models of the problem: the confluent flow model and the non-confluent flow model. In the former model, the way of evacuation is restricted so that all the people at a vertex have to evacuate to the same sink, and in the latter model, there is no such restriction. In this paper, for both the models, we develop algorithms which run in almost linear time regardless of the number of sinks. It should be stressed that for the confluent flow model, our algorithm improves upon the previous result by Benkoczi et al. [Theoretical Computer Science, 2020], and one for the non-confluent flow model is the first polynomial time algorithm.


翻译:我们处理动态流动路径网络中的设施位置问题。动态流动路径网络由一条无方向路径组成,其边缘长度为正,边缘能力为正,顶端重量为正。路径可被视为一条道路,路边距离的边缘长度为公路的边缘长度,而顶面重量为现场人数的边缘重量。边缘能力限制每个单位时间进入边缘的人数。在动态流动网络中,根据边缘或脊椎的特定点,称为汇,所有人员都尽可能快地从脊椎疏散到汇。问题在于如何找到动态流动路径网络中的汇的位置,这样可以将总疏散时间(即,所有人员疏散时间的总数)减少到最小化。我们考虑的是问题的两个模型:连接流模型和非连接流模式。在前一个模型中,疏散的方式受到限制,因此所有处于顶端的人必须尽快从顶端转移到同一水槽,而在后一个模型中,在非模型中,找到汇的汇的位置是没有限制的。在总体疏散时间里程中,在本文的模型中,一个模型中,要改进的流程是我们所要改进的电算。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
最新《高级算法》Advanced Algorithms,176页pdf
专知会员服务
90+阅读 · 2020年10月22日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
视频目标检测:Flow-based
极市平台
22+阅读 · 2019年5月27日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2020年11月23日
Arxiv
0+阅读 · 2020年11月23日
Arxiv
0+阅读 · 2020年11月22日
Arxiv
0+阅读 · 2020年11月20日
Arxiv
0+阅读 · 2020年11月20日
VIP会员
相关资讯
视频目标检测:Flow-based
极市平台
22+阅读 · 2019年5月27日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员