The job of a camera operator is challenging, and potentially dangerous, when filming long moving camera shots. Broadly, the operator must keep the actors in-frame while safely navigating around obstacles, and while fulfilling an artistic vision. We propose a unified hardware and software system that distributes some of the camera operator's burden, freeing them up to focus on safety and aesthetics during a take. Our real-time system provides a solo operator with end-to-end control, so they can balance on-set responsiveness to action vs planned storyboards and framing, while looking where they're going. By default, we film without a field monitor. Our LookOut system is built around a lightweight commodity camera gimbal mechanism, with heavy modifications to the controller, which would normally just provide active stabilization. Our control algorithm reacts to speech commands, video, and a pre-made script. Specifically, our automatic monitoring of the live video feed saves the operator from distractions. In pre-production, an artist uses our GUI to design a sequence of high-level camera "behaviors." Those can be specific, based on a storyboard, or looser objectives, such as "frame both actors." Then during filming, a machine-readable script, exported from the GUI, ties together with the sensor readings to drive the gimbal. To validate our algorithm, we compared tracking strategies, interfaces, and hardware protocols, and collected impressions from a) film-makers who used all aspects of our system, and b) film-makers who watched footage filmed using LookOut.


翻译:摄像操作员的工作具有挑战性, 而且在拍摄长期移动的摄像镜头时, 可能非常危险。 广义地说, 操作员必须让演员在机体内, 安全地在障碍周围航行, 并实现艺术的愿景 。 我们提议一个统一的硬件和软件系统, 分配摄像操作员的一些负担, 让他们在拍摄时能够集中关注安全和美学。 我们的实时系统为一个独家操作员提供端到端的控制, 这样他们就可以平衡对行动的反应, 相对于计划的故事板和布局, 并同时看他们要到哪里去。 默认时, 我们没有实地监视。 我们的 LookOut 系统是围绕一个轻量的商品相机 Gimbal 机制建立的, 并且对控制器进行大量修改, 通常只是提供积极的稳定性。 我们的控制算法对语音指令、 视频和预设的脚本的反应, 我们的自动监控视频传输器使操作员免于分心。 制作过程中, 一位艺术家使用我们的图形来设计一个高层次的直观镜“ ” 。 这些人可以具体地,, 与我们阅读的影像板, 的脚本的脚本, 的脚本, 一起阅读, 的脚本, 的脚本, 的脚本, 我们的脚本的脚本, 用的脚本, 的脚本, 的脚本, 用的脚本, 的脚本, 的脚本, 的脚本, 的脚本, 的脚本, 的脚本, 的脚本, 的脚本, 的脚本, 的脚本, 的脚本, 的脚本, 的脚本, 的脚本, 的脚本, 的脚本, 的脚本, 的脚本,, 的脚本,, 的脚本, 的脚本, 的脚本,, 的脚本,, 的脚本, 的脚本, 我们的脚本, 的脚本, 的脚本, 的脚本, 的脚本, 的脚本, 的脚本, 的脚本, 的脚本, 的脚本,, 的脚本,, 的脚本,

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员