A novel optimization strategy, Info-Evo, is described, in which natural gradient search using nonparametric Fisher information is used to provide ongoing guidance to an evolutionary learning algorithm, so that the evolutionary process preferentially moves in the directions identified as "shortest paths" according to the natural gradient. Some specifics regarding the application of this approach to automated program learning are reviewed, including a strategy for integrating Info-Evo into the MOSES program learning framework.
翻译:介绍了一种新的优化战略Info-Evo,其中利用非参数渔业信息进行自然梯度搜索,为进化学习算法提供持续指导,以便进化过程按照自然梯度向被确定为“最短路径”的方向移动。 审查了应用这种方法进行自动程序学习的一些细节,包括将Info-Evo纳入MOSES方案学习框架的战略。