Working towards the development of an evolvable cancer treatment simulator, the investigation of Differential Evolution was considered, motivated by the high efficiency of variations of this technique in real-valued problems. A basic DE algorithm, namely "DE/rand/1" was used to optimize the simulated design of a targeted drug delivery system for tumor treatment on PhysiCell simulator. The suggested approach proved to be more efficient than a standard genetic algorithm, which was not able to escape local minima after a predefined number of generations. The key attribute of DE that enables it to outperform standard EAs, is the fact that it keeps the diversity of the population high, throughout all the generations. This work will be incorporated with ongoing research in a more wide applicability platform that will design, develop and evaluate targeted drug delivery systems aiming cancer tumours.
翻译:研究“差异进化”的动机是,这种技术在实际价值问题中的变化效率很高,因此考虑开发一个可演化的癌症治疗模拟器,研究“差异进化”的动机是,这种技术在实际价值问题中的变化效率很高,使用基本的DE算法,即“DE/rand/1”来优化用于在PhysisCell模拟器上进行肿瘤治疗的定向药物提供系统的模拟设计,所建议的方法证明比标准遗传算法更有效,因为标准遗传算法在预先确定的几代人之后无法摆脱当地迷你。DE的关键特征是,它能够使其超过标准EA,因为它使人口的多样性在一代人中保持高,这项工作将与正在进行的研究结合起来,在设计、开发和评估针对癌症肿瘤的定向药物提供系统的一个更广泛的适用性平台上进行,以设计、开发和评估有针对性的药物提供系统。