The Santa Claus problem is a fundamental problem in fair division: the goal is to partition a set of heterogeneous items among heterogeneous agents so as to maximize the minimum value of items received by any agent. In this paper, we study the online version of this problem where the items are not known in advance and have to be assigned to agents as they arrive over time. If the arrival order of items is arbitrary, then no good assignment rule exists in the worst case. However, we show that, if the arrival order is random, then for $n$ agents and any $\varepsilon > 0$, we can obtain a competitive ratio of $1-\varepsilon$ when the optimal assignment gives value at least $\Omega(\log n / \varepsilon^2)$ to every agent (assuming each item has at most unit value). We also show that this result is almost tight: namely, if the optimal solution has value at most $C \ln n / \varepsilon$ for some constant $C$, then there is no $(1-\varepsilon)$-competitive algorithm even for random arrival order.
翻译:圣诞老人问题是公平划分中的一个基本问题:目标是在各不同物剂之间分配一组不同的物品,以便最大限度地提高任何物剂收到的物品的最低价值。 在本文中, 我们研究这一问题的在线版本, 当这些物品事先不为人所知, 并且随着时间的到来而必须分配给物剂。 如果物品的到货顺序是任意的, 那么最坏的情况就没有好的任务分配规则。 但是, 我们显示, 如果抵达订单是随机的, 那么对于一固定的物剂和任何1美元, 我们可以得到1美元的竞争比率。 当最佳分配给每个物剂至少1美元(\ varepsilon n/\ varepsilon2美元)的价值时, 我们也可以看到这个结果几乎很紧凑: 也就是说, 如果最佳办法的价值最高为1美元/ n /\ varepsilon, 那么即使对于随机抵达来说, 也就没有1美元( varepsilon)- 竞争性的算法。</s>