Automated vehicle acceptance (AVA) has been measured mostly subjectively by questionnaires and interviews, with a main focus on drivers inside automated vehicles (AVs). To ensure that AVs are widely accepted by the public, ensuring the acceptance by both drivers and passengers is key. The in-vehicle experience of passengers will determine the extent to which AVs will be accepted by passengers. A comprehensive understanding of potential assessment methods to measure the passenger experience in AVs is needed to improve the in-vehicle experience of passengers and thereby the acceptance. The present work provides an overview of assessment methods that were used to measure a driver's behavior, and cognitive and emotional states during (automated) driving. The results of the review have shown that these assessment methods can be classified by type of data-collection method (e.g., questionnaires, interviews, direct input devices, sensors), object of their measurement (i.e., perception, behavior, state), time of measurement, and degree of objectivity of the data collected. A conceptual model synthesizes the results of the literature review, formulating relationships between the factors constituting the in-vehicle experience and AVA acceptance. It is theorized that the in-vehicle experience influences the intention to use, with intention to use serving as predictor of actual use. The model also formulates relationships between actual use and well-being. A combined approach of using both subjective and objective assessment methods is needed to provide more accurate estimates for AVA, and advance the uptake and use of AVs.
翻译:暂无翻译