Recommendation systems make predictions chiefly based on users' historical interaction data (e.g., items previously clicked or purchased). There is a risk of privacy leakage when collecting the users' behavior data for building the recommendation model. However, existing privacy-preserving solutions are designed for tackling the privacy issue only during the model training and results collection phases. The problem of privacy leakage still exists when directly sharing the private user interaction data with organizations or releasing them to the public. To address this problem, in this paper, we present a User Privacy Controllable Synthetic Data Generation model (short for UPC-SDG), which generates synthetic interaction data for users based on their privacy preferences. The generation model aims to provide certain privacy guarantees while maximizing the utility of the generated synthetic data at both data level and item level. Specifically, at the data level, we design a selection module that selects those items that contribute less to a user's preferences from the user's interaction data. At the item level, a synthetic data generation module is proposed to generate a synthetic item corresponding to the selected item based on the user's preferences. Furthermore, we also present a privacy-utility trade-off strategy to balance the privacy and utility of the synthetic data. Extensive experiments and ablation studies have been conducted on three publicly accessible datasets to justify our method, demonstrating its effectiveness in generating synthetic data under users' privacy preferences.


翻译:建议系统主要根据用户的历史互动数据作出预测(例如,以前点击过或购买过的项目);在为建立建议模式收集用户行为数据时,存在隐私泄露的风险;然而,只有在示范培训和成果收集阶段才设计出解决隐私问题的现有隐私保护解决方案;在与各组织直接分享私人用户互动数据或向公众公布这些数据时,隐私泄漏问题仍然存在;为了解决这一问题,我们在本文件中提出了一个用户隐私控制可控合成数据生成模型(APC-SDG短时间),该模型根据用户的隐私偏好为为用户生成合成互动数据;生成模型的目的是提供某些隐私保障,同时在数据层面和项目层面最大限度地利用生成的合成数据;具体地说,在数据层面,我们设计了一个选择那些对用户从用户互动数据中偏好较少的物品的选择模块;在项目层面,我们提议了一个合成数据生成模块,以生成一个与用户偏好选择的选定项目相匹配的合成数据生成项目;此外,我们还根据用户的隐私和可获取性数据交易战略,在可获取性数据中,提出了一种可获取的保密性和可获取性数据分析方法。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关VIP内容
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员