In this paper, we characterize the extremal dependence of $d$ asymptotically dependent variables by a class of random vectors on the $(d-1)$-dimensional hyperplane perpendicular to the diagonal vector $\mathbf1=(1,\ldots,1)$. This translates analyses of multivariate extremes to that on a linear vector space, opening up possibilities for applying existing statistical techniques that are based on linear operations. As an example, we demonstrate obtaining lower-dimensional approximations of the tail dependence through principal component analysis. Additionally, we show that the widely used H\"usler-Reiss family is characterized by a Gaussian family residing on the hyperplane.
翻译:本文通过一类位于$(d-1)$维超平面上的随机向量,刻画了$d$个渐近相依变量的极值相依特性,该超平面垂直于对角线向量$\mathbf1=(1,\ldots,1)$。这将多元极值分析转化为线性向量空间上的分析,为应用基于线性运算的现有统计技术开辟了可能性。作为示例,我们演示了通过主成分分析获得尾部相依性的低维近似。此外,我们证明了广泛使用的H\"usler-Reiss分布族可由位于该超平面上的高斯分布族刻画。