We address the problem of computing the interference-plus-noise covariance matrix from a sparsely located demodulation reference signal (DMRS) for spatial domain interference whitening (IW). The IW procedure is critical at the user equipment (UE) to mitigate the co-channel interference in 5G new radio (NR) systems. A supervised learning based algorithm is proposed to compute the covariance matrix with goals of minimizing both the block-error rate (BLER) and the whitening complexity. A single neural network is trained to select an IW option for covariance computation in various interference scenarios consisting of different interference occupancy, signal-to-interference ratio, signal-to-noise ratio, modulation order, coding rate, etc. In interference-dominant scenarios, the proposed algorithm computes the covariance matrix using DMRS in one resource block (RB) due to the frequency selectivity of the interference channel. On the other hand, in noise-dominant scenarios, the covariance matrix is computed from DMRS in entire signal bandwidth. Further, the proposed algorithm approximates the covariance matrix into a diagonal matrix when the spatial correlation of interference-plus-noise is low. This approximation reduces the complexity of whitening from $\mathcal{O}(N^3)$ to $\mathcal{O}(N)$ where $N$ is the number of receiver antennas. Results show that the selection algorithm can minimize the BLER under both trained as well as untrained interference scenarios.
翻译:我们处理从位置稀少的降调参考信号(DMRS)中计算干扰加噪音共变矩阵的问题,用于空间域干扰白化(IW)。 IW程序对于用户设备(UE)至关重要,可以减轻5G新无线电(NR)系统中的共通道干扰。建议以监督学习为基础的算法来计算共变矩阵,其目标就是尽量减少阻隔率(BLERR)和白化复杂度。一个单一神经网络(DMRS)经过培训,可以选择一个IW选项,用于在各种干扰情景中进行共变换计算,这些情景包括不同的干扰占用、信号与干扰比率、信号对信号与噪音比率、调制顺序、编码速度等。在干扰主导性假设中,拟议算法将共变式矩阵用于一个资源区(RBRB),因为干扰频道的频率选择性。另一方面,在噪音占主导度的假设情景下,共变式矩阵从DRS整个信号带宽度中计算出共变率值。此外,拟议算法将内部的低变率矩阵作为B的正序,从而将最低变后端端端的内端端端端端端数据缩缩缩缩缩缩。