Complete computation of turbulent combustion flow involves two separate steps: mapping reaction kinetics to low-dimensional manifolds and looking-up this approximate manifold during CFD run-time to estimate the thermo-chemical state variables. In our previous work, we showed that using a deep architecture to learn the two steps jointly, instead of separately, is 73% more accurate at estimating the source energy, a key state variable, compared to benchmarks and can be integrated within a DNS turbulent combustion framework. In their natural form, such deep architectures do not allow for uncertainty quantification of the quantities of interest: the source energy and key species source terms. In this paper, we expand on such architectures, specifically ChemTab, by introducing deep ensembles to approximate the posterior distribution of the quantities of interest. We investigate two strategies of creating these ensemble models: one that keeps the flamelet origin information (Flamelets strategy) and one that ignores the origin and considers all the data independently (Points strategy). To train these models we used flamelet data generated by the GRI--Mech 3.0 methane mechanism, which consists of 53 chemical species and 325 reactions. Our results demonstrate that the Flamelets strategy is superior in terms of the absolute prediction error for the quantities of interest, but is reliant on the types of flamelets used to train the ensemble. The Points strategy is best at capturing the variability of the quantities of interest, independent of the flamelet types. We conclude that, overall, ChemTab Deep Ensembles allows for a more accurate representation of the source energy and key species source terms, compared to the model without these modifications.
翻译:动荡燃烧流的完整计算包括两个不同的步骤:绘制低维的反动图,在碳化与热化学状态变量的运行期间寻找这一大约的方块。在先前的工作中,我们显示,使用深结构来共同学习这两个步骤,而不是分开,在估计源能时,比起基准,更准确73%的关键状态变量,可以纳入DNS动荡燃烧框架。在自然形态中,这种深层结构不允许对利息数量进行不确定的量化:源能和关键物种源值。在本文中,我们扩大这些结构,特别是ChemTab,采用深度组合来估计热化学状态变量的变量。我们调查了两种创建联合元素模型的战略:一种是保持火焰源信息(Flamletlets战略),一种是忽略来源和独立考虑所有数据(points 战略 ) 。我们使用由GRI-Mech 3.0甲烷机制生成的火焰源值数据,它由53种化学特性的种子分布组成, 其精度战略的精度的精度, 其精度的精度的精度的精度是我们的精度, 其精度的精度的精度,其精度的精度的精度的精度的精度的精度是 我们对精度的精度的精度的精度的精度的精度,其精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度, 我們的精度的精度的精度的精度的精度的精度, 我們的精度的精度的精度的精度的精度的精度是的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度, 我們的精度的精度的精度的精度是的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度, 我們的精度的精度的精度的精度的精度的精度的精