The brain is the perfect place to look for inspiration to develop more efficient neural networks. The inner workings of our synapses and neurons provide a glimpse at what the future of deep learning might look like. This paper serves as a tutorial and perspective showing how to apply the lessons learnt from several decades of research in deep learning, gradient descent, backpropagation and neuroscience to biologically plausible spiking neural neural networks. We also explore the delicate interplay between encoding data as spikes and the learning process; the challenges and solutions of applying gradient-based learning to spiking neural networks; the subtle link between temporal backpropagation and spike timing dependent plasticity, and how deep learning might move towards biologically plausible online learning. Some ideas are well accepted and commonly used amongst the neuromorphic engineering community, while others are presented or justified for the first time here. A series of companion interactive tutorials complementary to this paper using our Python package, snnTorch, are also made available: https://snntorch.readthedocs.io/en/latest/tutorials/index.html
翻译:大脑是寻找灵感以发展更高效神经网络的完美场所。 我们神经突触和神经元的内在作用为我们深层学习的未来提供了一瞥。 本文是一个辅导和视角,展示了如何将数十年来深层学习、梯度下行、回向和神经科学研究中的经验教训应用到生物上可信的神经网络中。 我们还探索了编码数据作为钉钉钉与学习过程之间的微妙互动关系;将基于梯度的学习应用到喷射神经网络的挑战和解决办法;时间回流与根据时间调整和峰值计时依赖的可塑性之间的微妙联系,以及深层学习如何走向生物学上可信的在线学习。 某些想法在神经形态工程界中被广泛接受和普遍使用,而另一些想法首次在这里被提出或论证。 一系列配套的交互式辅导会利用我们的Python软件包( snnTorch)作为本文的补充: https://sntoch.readthedocs. iop/en/latest/tuments/index/index.html。