Shared spectrum systems facilitate spectrum allocation to unlicensed users without harming the licensed users; they offer great promise in optimizing spectrum utility, but their management (in particular, efficient spectrum allocation to unlicensed users) is challenging. A significant shortcoming of current allocation methods is that they are either done very conservatively to ensure correctness, or are based on imperfect propagation models and/or spectrum sensing with poor spatial granularity. This leads to poor spectrum utilization, the fundamental objective of shared spectrum systems. To allocate spectrum near-optimally to secondary users in general scenarios, we fundamentally need to have knowledge of the signal path-loss function. In practice, however, even the best known path-loss models have unsatisfactory accuracy, and conducting extensive surveys to gather path-loss values is infeasible. To circumvent this challenge, we propose to learn the spectrum allocation function directly using supervised learning techniques. We particularly address the scenarios when the primary users' information may not be available; for such settings, we make use of a crowdsourced sensing architecture and use the spectrum sensor readings as features. We develop an efficient CNN-based approach (called DeepAlloc) and address various challenges that arise in its application to the learning the spectrum allocation function. Via extensive large-scale simulation and a small testbed, we demonstrate the effectiveness of our developed techniques; in particular, we observe that our approach improves the accuracy of standard learning techniques and prior work by up to 60%.


翻译:共享频谱系统有助于向无证用户分配频谱,而不会伤害持证用户;这些系统在优化频谱效用方面大有希望,但是其管理(特别是向无证用户有效分配频谱)具有挑战性。当前分配方法的一个重大缺陷是,它们要么非常保守地确保正确性,要么以不完善的传播模型和/或光谱传感器为基础,而空间颗粒度差。这导致共享频谱系统的基本目标,即频谱利用率低;为了在一般情况下将频谱近乎最接近最理想的频谱分配给第二用户,我们从根本上需要了解信号路径丢失功能。然而,在实践中,即使是已知的最佳路径损失模型也缺乏准确性,而且为收集路径损失值进行广泛的调查是不可行的。为避免这一挑战,我们提议直接使用有监督的学习技术来学习频谱分配功能。我们特别针对主要用户信息可能得不到的情景,为此,我们使用群谱源感感传感器作为特征。我们开发了高效的CNN路径(称为深阿洛),但即使是已知的路径损失模型模型模型也缺乏准确性,因此无法进行广泛的调查。我们要通过先期的大规模学习技术来学习,从而显示我们是如何进行大规模的学习的系统。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
92+阅读 · 2020年2月28日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员