Federated learning (FL) has been proposed as a popular learning framework to protect the users' data privacy but it has difficulties in motivating the users to participate in task training. This paper proposes a Bertrand-game-based framework for FL in wireless networks, where the model server as a resource buyer can issue an FL task, whereas the employed user equipment (UEs) as the resource sellers can help train the model by using their local data. Specially, the influence of time-varying \textit{task load} and \textit{channel quality} on UE's motivation to participate in FL is considered. Firstly, we adopt the finite-state discrete-time Markov chain (FSDT-MC) method to predict the \textit{existing task load} and \textit{channel gain} of a UE during a FL task. Depending on the performance metrics set by the model server and the estimated overall energy cost for engaging in the FL task, each UE seeks the best price to maximize its own profit in the game. To this end, the Nash equilibrium (NE) of the game is obtained in closed form, and a distributed iterative algorithm is also developed to find the NE. Simulation result verifies the effectiveness of the proposed approach.
翻译:联邦学习(FL)被提议为保护用户数据隐私的普及学习框架,但很难激励用户参加任务培训。本文提议了无线网络FL基于伯特游戏的框架,在无线网络中,示范服务器作为资源购买者可以发布FL任务,而作为资源销售商的用户设备可以使用当地数据帮助培训模型。特别是,时间变化的\ textit{taskload}和\ textit{channel品质对UE参与FL的动机的影响,将加以考虑。首先,我们采用了限定状态离散时间的Markov链(FSDT-MC)方法,以预测FL任务执行期间UE的任务,而作为资源销售商的用户设备可以帮助培训模型。根据模型服务器设定的性能衡量标准以及参与FL任务的估计总能源成本,每个UE都寻求最佳价格,以最大限度地实现自己在游戏中的利益。为此,我们采用了有限状态离散时间的Markov链(FSDTDT-MC)方法,用以预测FLL任务负荷任务负荷任务负荷的当前负荷和/channelevelycal get the slateal slevildaldaldationaldal, lavelatedddddd the silvelationaldaldalddddddaldaldaldalddaldaldaldalddddddaldaldaldddddddddaldddaldaldalddddddddddddaldaldaldalddddddddddaldddddddddddddaldddaldddddddddddaldaldaldaldaldaldalddddddddaldaldaldaldalddaldddddaldaldaldaldaldaldaldal,, ladaldaldaldaldaldaldaldddddaldaldddddaldalddddd, ladaldddddaldddddddddd