Self-contained loaders are widely adopted in botnets for injecting loading commands and spawning new bots. While researchers can dissect bot clients to get various information of botnets, the cloud-based and self-contained design of loaders effectively hinders researchers from understanding the loaders' evolution and variation using classic methods. The decoupled nature of bot loaders also dramatically reduces the feasibility of investigating relationships among clients and infrastructures. In this paper, we propose a text-based method to investigate and analyze details of bot loaders using honeypots. We leverage high interaction honeypots to collect request logs and define eight families of bot loaders based on the result of agglomerative clustering. At the function level, we push our study further to explore their homological relationship based on similarity analysis of request logs using sequence aligning techniques. This further exploration discloses that the released code of Mirai keeps spawning new generations of botnets both on the client and the server side. This paper uncovers the homology of active botnet infrastructures, providing a new prospect on finding covert relationships among cybercrimes. Bot loaders are precisely investigated at the function level to yield a new insight for researchers to identify the botnet's infrastructures and track their evolution over time.
翻译:自足式装载器被广泛采用,用于注入装货指令和产卵新机器人。虽然研究人员可以解剖机器人客户以获取各种肉网信息,但云基和自成一体的装载器设计实际上阻碍研究人员使用经典方法了解装载器的演变和变异。 机器人装载器的脱钩性质也大大降低了调查客户和基础设施之间关系的可行性。 在本文件中,我们提出了一个基于文本的方法,用于调查和分析使用蜂窝的机器人装载器的细节。 我们利用高互动蜂窝收集高比例的蜂窝收集原始日志,并根据聚居的结果界定八个机器人装载器组群。 在功能层面,我们推动我们的研究,根据对请求日志的类似性分析,利用顺序调整技术,进一步探索它们的同系关系。 进一步探索显示,Mirai所释放的代码在客户和服务器两边不断生成新一代的机器人网络网络网络。 本文揭示了活跃的机器人网络基础设施同性,提供了寻找隐藏式网络化关系的新前景,提供了寻找隐藏式网络运行功能的新前景,在网络服务器上进行精确调查。