The intelligibility and quality of speech from a mobile phone or public announcement system are often affected by background noise in the listening environment. By pre-processing the speech signal it is possible to improve the speech intelligibility and quality -- this is known as near-end listening enhancement (NLE). Although, existing NLE techniques are able to greatly increase intelligibility in harsh noise environments, in favorable noise conditions the intelligibility of speech reaches a ceiling where it cannot be further enhanced. Actually, the focus of existing methods solely on improving the intelligibility causes unnecessary processing of the speech signal and leads to speech distortions and quality degradations. In this paper, we provide a new rationale for NLE, where the target speech is minimally processed in terms of a processing penalty, provided that a certain performance constraint, e.g., intelligibility, is satisfied. We present a closed-form solution for the case where the performance criterion is an intelligibility estimator based on the approximated speech intelligibility index and the processing penalty is the mean-square error between the processed and the clean speech. This produces an NLE method that adapts to changing noise conditions via a simple gain rule by limiting the processing to the minimum necessary to achieve a desired intelligibility, while at the same time focusing on quality in favorable noise situations by minimizing the amount of speech distortions. Through simulation studies, we show the proposed method attains speech quality on par or better than existing methods in both objective measurements and subjective listening tests, whilst still sustaining objective speech intelligibility performance on par with existing methods.


翻译:手机或公共公告系统的言语的灵敏度和质量往往受到听力环境中背景噪音的影响。通过预先处理语音信号,有可能改进语言智能度和质量 -- -- 这被称为近端听力增强(NLE ) 。虽然现有的NLE技术能够在严酷的噪音环境中极大地提高智能度,在有利的噪音条件下,言语感知度达到一个无法进一步提高的上限。事实上,现有方法仅仅侧重于改进感知度,导致对语音信号的不必要处理,导致言语扭曲和质量退化。在本文中,我们为NLE提供了一个新的理由,在处理处罚方面,目标演讲的灵敏度得到最低限度的处理,条件是某些性能限制,例如,感知性能,是令人满意的。我们为这种发言的灵敏度标准提供了一个封闭式解决方案,其效果无法进一步提高。基于感知性言语感指数和处理处罚是经处理的言语信号和言语质量扭曲之间的中度差差差差差差。我们为NLE提供一个新的理由,在处理处罚方面,以最起码的性质量测试方式,同时通过简单、最客观的处理方法,以降低目前的标准,以降低的言质性能,同时调整现有方法,通过简化的言语质处理方式,以降低的言质,通过简化的言语态,以降低的音质量,以改变现有的方法,通过平压方法,在平压。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
28+阅读 · 2021年10月1日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员