We study $k$-clustering problems with lower bounds, including $k$-median and $k$-means clustering with lower bounds. In addition to the point set $P$ and the number of centers $k$, a $k$-clustering problem with (uniform) lower bounds gets a number $B$. The solution space is restricted to clusterings where every cluster has at least $B$ points. We demonstrate how to approximate $k$-median with lower bounds via a reduction to facility location with lower bounds, for which $O(1)$-approximation algorithms are known. Then we propose a new constrained clustering problem with lower bounds where we allow points to be assigned multiple times (to different centers). This means that for every point, the clustering specifies a set of centers to which it is assigned. We call this clustering with weak lower bounds. We give a $(6.5+\epsilon)$-approximation for $k$-median clustering with weak lower bounds and an $O(1)$-approximation for $k$-means with weak lower bounds. We conclude by showing that at a constant increase in the approximation factor, we can restrict the number of assignments of every point to $2$ (or, if we allow fractional assignments, to $1+\epsilon$). This also leads to the first bicritera approximation algorithm for $k$-means with (standard) lower bounds where bicriteria is interpreted in the sense that the lower bounds are violated by a constant factor. All algorithms in this paper run in time that is polynomial in $n$ and $k$ (and $d$ for the Euclidean variants considered).


翻译:我们研究下界值较低的组合问题,包括中值美元和中值美元,下界值较低的组合。除了设定点数和中值美元和中值美元外,下界值较低的组合问题为美元。除了设定点数和中值美元外,下界值较低的组合问题为美元。解决方案空间仅限于每个集体至少有至少B美元点的组合。我们展示了如何通过降低限值较低的设施地点削减标准值,以中值为中值为中值,中值为中值,中值为中值,中值为中值,中值为中值,中值为中值,中值为中值1美元,准值为中值美元。然后,我们提出新的限值标准组合问题,下界值为美元,我们允许多次指定点数(到不同的中心点),每点都指定一组中心值。我们称之为下界值的组合。我们给出了美元(6.5 ⁇ )美元,正值的中值最高值为美元,中值的中值是低限值的中值,而正值为美元。我们以美元为基值的正值的基值值值值值值为美元,因此,正值的中值值的中值值值值值值值值值值将值将值值值将值值值值值值值值。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
7+阅读 · 2020年8月7日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员