It is well known that symplectic integrators lose their near energy preservation properties when variable step sizes are used. The most common approach to combine adaptive step sizes and symplectic integrators involves the Poincar\'e transformation of the original Hamiltonian. In this article, we provide a framework for the construction of variational integrators using the Poincar\'e transformation. Since the transformed Hamiltonian is typically degenerate, the use of Hamiltonian variational integrators based on Type II or Type III generating functions is required instead of the more traditional Lagrangian variational integrators based on Type I generating functions. Error analysis is provided and numerical tests based on the Taylor variational integrator approach of Schmitt, Shingel, Leok (2018) to time-adaptive variational integration of Kepler's 2-Body problem are presented. Finally, we use our adaptive framework together with the variational approach to accelerated optimization presented in Wibisono, Wilson, Jordan (2016) to design efficient variational and non-variational explicit integrators for symplectic accelerated optimization.
翻译:众所周知,当使用不同步数大小时,间位融合器会失去近乎节能的特性。最常用的将适应步数大小和间位融合器结合起来的方法是原汉密尔顿人Poincar\'e转换。在本条中,我们提供了一个框架,用于利用Poincar\'e变形来建造变式融合器。由于变型汉密尔顿人通常会变质,因此需要使用基于二类或三类生成功能的汉密尔顿变异融合器,而不是基于类型I生成功能的较传统的拉格朗变异融合器。提供了错误分析,并根据Schmitt、Shichel、Leok(2018年)的泰勒变异组合器方法进行了数字测试,以适应Kepler2-Boy问题的时间变异化整合。最后,我们利用适应性框架和变异法方法来加快Wibisono、Wilson、Jordan-Jordan(1986年)的优化,以设计高效的变式和非变式的加速模拟快速优化。