Specular microscopy assessment of the human corneal endothelium (CE) in Fuchs' dystrophy is challenging due to the presence of dark image regions called guttae. This paper proposes a UNet-based segmentation approach that requires minimal post-processing and achieves reliable CE morphometric assessment and guttae identification across all degrees of Fuchs' dystrophy. We cast the segmentation problem as a regression task of the cell and gutta signed distance maps instead of a pixel-level classification task as typically done with UNets. Compared to the conventional UNet classification approach, the distance-map regression approach converges faster in clinically relevant parameters. It also produces morphometric parameters that agree with the manually-segmented ground-truth data, namely the average cell density difference of -41.9 cells/mm2 (95% confidence interval (CI) [-306.2, 222.5]) and the average difference of mean cell area of 14.8 um2 (95% CI [-41.9, 71.5]). These results suggest a promising alternative for CE assessment.
翻译:由于存在被称为直肠的暗图像区域,对Fuchs萎缩中的人类角状内分泌 ⁇ (CE)的显微镜评估具有挑战性。本文件建议采用基于UNet的分解方法,该方法要求最低处理后,并实现可靠的CE表光度评估和在Fuchs萎缩各度的直肠辨别。我们把分解问题作为细胞回归任务,而作为与UNets通常使用的像素级分级任务,而不是作为与象素级分级任务。与传统的UNet分类方法相比,远距离图谱回归法在临床相关参数中会更快地趋同,还产生与手动分解的地面分泌数据相一致的测光参数,即平均细胞密度为-41.9个细胞/毫米2(95%的置信度间隔(CI)[306.2,222.5]和平均平均细胞面积差14.8微米2(CI[-41.9,71.5])。这些结果表明,CE评估的替代方法很有希望。