A crucial step in single particle analysis (SPA) of cryogenic electron microscopy (Cryo-EM), 2D classification and alignment takes a collection of noisy particle images to infer orientations and group similar images together. Averaging these aligned and clustered noisy images produces a set of clean images, ready for further analysis such as 3D reconstruction. Fourier-Bessel steerable principal component analysis (FBsPCA) enables an efficient, adaptable, low-rank rotation operator. We extend the FBsPCA to additionally handle translations. In this extended FBsPCA representation, we use a probabilistic polar-coordinate Gaussian mixture model to learn soft clusters in an unsupervised fashion using an expectation maximization (EM) algorithm. The obtained rotational clusters are thus additionally robust to the presence of pairwise alignment imperfections. Multiple benchmarks from simulated Cryo-EM datasets show probabilistic PolarGMM's improved performance in comparisons with standard single-particle Cryo-EM tools, EMAN2 and RELION, in terms of various clustering metrics and alignment errors.
翻译:在对低温电子显微镜(Cryo-EM)、2D分类和校正的单一粒子分析(SPA)中,关键的一步是收集噪音粒子图像,以推导方向和将相似图像组合在一起。这些对齐和集群的噪音图像产生一套干净的图像,可供进一步分析,如3D重建。Fourier-Besbel可控主要部件分析(FBsPCA)使一个高效、适应性强、低级别旋转操作器得以运行。我们将FBsPCA扩大到额外处理翻译。在这种扩展的 FBsPCA 代表中,我们使用一种概率极地坐标高斯混合模型,以不受监督的方式学习软集群,使用预期最大化算法(EM),因此,获得的旋转组群与对齐不完善的匹配不完善状态是额外的。模拟冷冻-EM数据集的多个基准显示,在与标准的单粒子冷冻-EM工具、EMMAN2和RELION等标准组合测量和校正误方面,极地GMMMM的性性性性性性性性性性表现。