The attention mechanism requires huge computational efforts to process unnecessary calculations, significantly limiting the system's performance. Researchers propose sparse attention to convert some DDMM operations to SDDMM and SpMM operations. However, current sparse attention solutions introduce massive off-chip random memory access. We propose CPSAA, a novel crossbar-based PIM-featured sparse attention accelerator. First, we present a novel attention calculation mode. Second, we design a novel PIM-based sparsity pruning architecture. Finally, we present novel crossbar-based methods. Experimental results show that CPSAA has an average of 89.6X, 32.2X, 17.8X, 3.39X, and 3.84X performance improvement and 755.6X, 55.3X, 21.3X, 5.7X, and 4.9X energy-saving when compare with GPU, FPGA, SANGER, ReBERT, and ReTransformer.


翻译:关注机制需要巨大的计算努力来处理不必要的计算,这大大限制了系统的性能。研究人员建议对将一些DDMMM操作转换为SDDMM和SpMM操作的关注很少。然而,目前关注不足的解决方案引入了大规模离芯随机内存访问。我们建议采用CPSAA,这是一个新的跨条基PIM-功能化的分散关注加速器。首先,我们提出了一种新的关注计算模式。第二,我们设计了一个新的基于PIM的孔径结构。最后,我们提出了新的跨条基方法。实验结果显示,CPSAA的性能改进平均为89.6X、32.2X、17.8X、3.39X和3.84X,与GPU、FGA、SANGER、REBERT和ReTrafored相比,755.6X、55.3X、21.3X、5.7X和4.9X节能。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月17日
Arxiv
0+阅读 · 2022年11月14日
Arxiv
33+阅读 · 2022年2月15日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
27+阅读 · 2017年12月6日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
0+阅读 · 2022年11月17日
Arxiv
0+阅读 · 2022年11月14日
Arxiv
33+阅读 · 2022年2月15日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
27+阅读 · 2017年12月6日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员