The bane of one-class collaborative filtering is interpreting and modelling the latent signal from the missing class. In this paper we present a novel Bayesian generative model for implicit collaborative filtering. It forms a core component of the Xbox Live architecture, and unlike previous approaches, delineates the odds of a user disliking an item from simply not considering it. The latent signal is treated as an unobserved random graph connecting users with items they might have encountered. We demonstrate how large-scale distributed learning can be achieved through a combination of stochastic gradient descent and mean field variational inference over random graph samples. A fine-grained comparison is done against a state of the art baseline on real world data.
翻译:单级合作过滤的本垒打正在解释和模拟缺失类的潜在信号。 在本文中, 我们提出了一个新的贝叶西亚基因模型, 用于隐含协作过滤。 它构成了 Xbox Live 结构的核心组成部分, 与以往的方法不同, 划分了用户对某项内容不感兴趣的可能性而不考虑它。 潜在信号被视为一个未观测的随机图, 将用户与他们可能遇到的物品连接起来。 我们展示了如何通过将随机图样的随机梯度下降和平均场外变异推断结合起来, 如何实现大规模分布式学习。 与真实世界数据的最新基线进行细微对比。