P-time event graphs (P-TEGs) are specific timed discrete-event systems, in which the timing of events is constrained by intervals. An important problem is to check, for all natural numbers $d$, the existence of consistent $d$-periodic trajectories for a given P-TEG. In graph theory, the Proportional-Inverse-Constant-Non-positive Circuit weight Problem (PIC-NCP) consists in finding all the values of a parameter such that a particular parametric weighted directed graph does not contain circuits with positive weight. In a related paper, we have proposed a strongly polynomial algorithm that solves the PIC-NCP in lower worst-case complexity compared to other algorithms reported in literature. In the present paper, we show that the first problem can be formulated as an instance of the second; consequently, we prove that the same algorithm can be used to find $d$-periodic trajectories in P-TEGs. Morever, exploiting the connection between the PIC-NCP and max-plus algebra, we prove that the existence of a consistent 1-periodic trajectory of a certain period is a necessary and sufficient condition for the existence of a consistent $d$-periodic trajectory of the same period, for any value of $d$.


翻译:P-时间事件图(P-TEGs)是特定的时间分解活动系统,在这种系统中,事件的时间间隔受时间间隔限制,一个重要问题是对所有自然数字的美元进行检查,检查是否存在一个特定P-TEG的一致美元周期轨迹。在图形理论中,比例-反时-非中性巡回权重问题(PIC-NCP)是指找到某一参数的所有值,使某一参数的参数加权对称方向图不包含正重电路。在一份相关文件中,我们提出了一种强烈的多元算法,该算法与文献中报告的其他算法相比,在最坏的复杂度较低的情况下解决了PIC-NCP。在本文件中,我们表明第一个问题可以作为第二个实例出现;因此,我们证明同一算法可用于在P-TEGs找到美元周期的美元周期轨迹。更多利用PIC-NCP和Max-plus algebra之间的关联,我们证明存在一个连续的轨道周期1美元周期的足够值。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【教程推荐】中科大刘淇教授-数据挖掘基础,刘 淇
专知会员服务
80+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年6月4日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月12日
Arxiv
0+阅读 · 2021年7月12日
Arxiv
0+阅读 · 2021年7月8日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【教程推荐】中科大刘淇教授-数据挖掘基础,刘 淇
专知会员服务
80+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年6月4日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员