P-time event graphs (P-TEGs) are specific timed discrete-event systems, in which the timing of events is constrained by intervals. An important problem is to check, for all natural numbers $d$, the existence of consistent $d$-periodic trajectories for a given P-TEG. In graph theory, the Proportional-Inverse-Constant-Non-positive Circuit weight Problem (PIC-NCP) consists in finding all the values of a parameter such that a particular parametric weighted directed graph does not contain circuits with positive weight. In a related paper, we have proposed a strongly polynomial algorithm that solves the PIC-NCP in lower worst-case complexity compared to other algorithms reported in literature. In the present paper, we show that the first problem can be formulated as an instance of the second; consequently, we prove that the same algorithm can be used to find $d$-periodic trajectories in P-TEGs. Morever, exploiting the connection between the PIC-NCP and max-plus algebra, we prove that the existence of a consistent 1-periodic trajectory of a certain period is a necessary and sufficient condition for the existence of a consistent $d$-periodic trajectory of the same period, for any value of $d$.
翻译:P-时间事件图(P-TEGs)是特定的时间分解活动系统,在这种系统中,事件的时间间隔受时间间隔限制,一个重要问题是对所有自然数字的美元进行检查,检查是否存在一个特定P-TEG的一致美元周期轨迹。在图形理论中,比例-反时-非中性巡回权重问题(PIC-NCP)是指找到某一参数的所有值,使某一参数的参数加权对称方向图不包含正重电路。在一份相关文件中,我们提出了一种强烈的多元算法,该算法与文献中报告的其他算法相比,在最坏的复杂度较低的情况下解决了PIC-NCP。在本文件中,我们表明第一个问题可以作为第二个实例出现;因此,我们证明同一算法可用于在P-TEGs找到美元周期的美元周期轨迹。更多利用PIC-NCP和Max-plus algebra之间的关联,我们证明存在一个连续的轨道周期1美元周期的足够值。