Tensor decomposition is a powerful tool for data analysis and has been extensively employed in the field of hyperspectral-multispectral image fusion (HMF). Existing tensor decomposition-based fusion methods typically rely on disruptive data vectorization/reshaping or impose rigid constraints on the arrangement of factor tensors, hindering the preservation of spatial-spectral structures and the modeling of cross-dimensional correlations. Although recent advances utilizing the Fully-Connected Tensor Network (FCTN) decomposition have partially alleviated these limitations, the process of reorganizing data into higher-order tensors still disrupts the intrinsic spatial-spectral structure. Furthermore, these methods necessitate extensive manual parameter tuning and exhibit limited robustness against noise and spatial degradation. To alleviate these issues, we propose the Bayesian FCTN (BFCTN) method. Within this probabilistic framework, a hierarchical sparse prior that characterizing the sparsity of physical elements, establishes connections between the factor tensors. This framework explicitly models the intrinsic physical coupling among spatial structures, spectral signatures, and local scene homogeneity. For model learning, we develop a parameter estimation method based on Variational Bayesian inference (VB) and the Expectation-Maximization (EM) algorithm, which significantly reduces the need for manual parameter tuning. Extensive experiments demonstrate that BFCTN not only achieves state-of-the-art fusion accuracy and strong robustness but also exhibits practical applicability in complex real-world scenarios.


翻译:张量分解是数据分析的有力工具,已广泛应用于高光谱-多光谱图像融合领域。现有的基于张量分解的融合方法通常依赖于破坏性数据向量化/重塑操作,或对因子张量的排列施加刚性约束,这阻碍了空间-光谱结构的保持与跨维度相关性的建模。尽管近期利用全连接张量网络分解的研究部分缓解了这些限制,但将数据重组为高阶张量的过程仍会破坏固有的空间-光谱结构。此外,这些方法需要大量手动参数调优,且对噪声和空间退化的鲁棒性有限。为缓解这些问题,我们提出了贝叶斯全连接张量网络方法。在该概率框架中,通过刻画物理元素稀疏性的分层稀疏先验,建立了因子张量间的关联。该框架显式建模了空间结构、光谱特征与局部场景均匀性之间的内在物理耦合关系。针对模型学习,我们开发了基于变分贝叶斯推理与期望最大化算法的参数估计方法,显著减少了手动参数调优的需求。大量实验表明,贝叶斯全连接张量网络方法不仅实现了最先进的融合精度与强鲁棒性,还在复杂现实场景中展现出实际应用价值。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员