The sixth-generation (6G) of wireless networks introduces a level of operational complexity that exceeds the limits of traditional automation and manual oversight. This paper introduces the "Wireless Copilot", an AI-powered technical assistant designed to function as a collaborative partner for human network designers, engineers, and operators. We posit that by integrating Large Language Models (LLMs) with a robust cognitive framework. It will surpass the existing AI tools and interact with wireless devices, transmitting the user's intentions into the actual network execution process. Then, Wireless Copilot can translate high-level human intent into precise, optimized, and verifiable network actions. This framework bridges the gap between human expertise and machine-scale complexity, enabling more efficient, intelligent, and trustworthy management of 6G systems. Wireless Copilot will be a novel layer between the wireless infrastructure and the network operators. Moreover, we explore Wireless Copilot's methodology and analyze its application in Low-Altitude Wireless Networks (LAWNets) assisting 6G networking, including network design, configuration, evaluation, and optimization. Additionally, we present a case study on intent-based LAWNets resource allocation, demonstrating its superior adaptability compared to others. Finally, we outline future research directions toward creating a comprehensive human-AI collaborative ecosystem for the 6G era.


翻译:第六代(6G)无线网络引入了超出传统自动化和人工监管极限的操作复杂性。本文提出“无线副驾驶”,一种AI驱动的技术助手,旨在作为人类网络设计师、工程师和操作员的协作伙伴。我们认为,通过将大型语言模型(LLMs)与强大的认知框架相结合,它将超越现有AI工具,并与无线设备交互,将用户意图转化为实际的网络执行过程。从而,无线副驾驶能够将高层次的人类意图转化为精确、优化且可验证的网络操作。该框架弥合了人类专业知识与机器规模复杂性之间的鸿沟,实现了对6G系统更高效、智能和可信的管理。无线副驾驶将成为无线基础设施与网络操作员之间的新型中间层。此外,我们探讨了无线副驾驶的方法论,并分析了其在低空无线网络(LAWNets)中辅助6G网络的应用,包括网络设计、配置、评估和优化。同时,我们展示了一项基于意图的LAWNets资源分配的案例研究,证明了其相较于其他方法的卓越适应性。最后,我们概述了为6G时代创建全面人机协作生态系统的未来研究方向。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
OpenAI GPT 4.5 报告 (中英文版)
专知会员服务
40+阅读 · 2025年3月1日
Pytorch多模态框架MMF
专知
50+阅读 · 2020年6月20日
预知未来——Gluon 时间序列工具包(GluonTS)
ApacheMXNet
24+阅读 · 2019年6月25日
Auto-Keras与AutoML:入门指南
云栖社区
18+阅读 · 2019年2月9日
DeepMind:用PopArt进行多任务深度强化学习
论智
29+阅读 · 2018年9月14日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关资讯
Pytorch多模态框架MMF
专知
50+阅读 · 2020年6月20日
预知未来——Gluon 时间序列工具包(GluonTS)
ApacheMXNet
24+阅读 · 2019年6月25日
Auto-Keras与AutoML:入门指南
云栖社区
18+阅读 · 2019年2月9日
DeepMind:用PopArt进行多任务深度强化学习
论智
29+阅读 · 2018年9月14日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员