We develop a fourth order accurate finite difference method for the three dimensional elastic wave equation in isotropic media with the piecewise smooth material property. In our model, the material property can be discontinuous at curved interfaces. The governing equations are discretized in second order form on curvilinear meshes by using a fourth order finite difference operator satisfying a summation-by-parts property. The method is energy stable and high order accurate. The highlight is that mesh sizes can be chosen according to the velocity structure of the material so that computational efficiency is improved. At the mesh refinement interfaces with hanging nodes, physical interface conditions are imposed by using ghost points and interpolation. With a fourth order predictor-corrector time integrator, the fully discrete scheme is energy conserving. Numerical experiments are presented to verify the fourth order convergence rate and the energy conserving property.
翻译:我们为三维弹性波方程式开发了第四顺序准确的差分法方法,该方程式在异热带介质中具有片段光滑的物质属性。 在我们的模型中, 物质属性在曲线界面中不具有不连续性。 调节方程式在曲线线藻上以第二顺序形式分解, 使用第四顺序的有限差分操作器满足一个按部和部进行总和的属性。 这种方法是能源稳定性和高顺序准确的。 亮点是, 可以根据材料的速度结构来选择网状尺寸, 从而提高计算效率。 在与悬浮节点的网状精细化界面中, 物理界面条件是用幽灵点和内插法强制的。 在第四顺序预测器- 校准器- 时间整合器中, 完全独立的分离方程式是节能。 数字实验用来验证第四顺序汇合率和节能属性。